
Engineering for Visibility
with Open Source Tools

Roanoke Code Camp, May 17, 2014

About Me

http://www.tildedave.com/

http://www.tildedave.com/
http://www.tildedave.com/

In this Talk

What is Visibility?

What Open Source Tools Can You Use For It?

Demo Time With Docker

Also In this Talk

What is Visibility?

Dev vs Ops

“Dev” “Ops”

“The application does X” “The application really does
X”

Problems With This Approach

Broken feedback loop for improvement of
product

Developers and Operations have different
priorities

Low-quality discussions

Continuous Improvement Cycle

“Does the application
do X?”

Instrument application
to send metrics about

X

Measure X

Change application
based on

measurement

Visibility Answers the Question

What is your application doing right now?

Logging is Not Enough

Logging helps but only shows individual actions

Custom A did action Y at time t0
Custom B did action Z at time t1
Custom C did action X at time t2

Logging is Not Enough

How many X’s in the last 5 minutes?

grep -c “X” /var/log/app.log
map reduce >:(

Logging is Not Enough

encourages 1-off investigation which does not
scale

encourages people being “grep wizards”

you want to look at aggregate data

Alerting Is Not Enough

Server alerting is only a black box approach

Database Server at load 6 -- but why?
App Server at CPU 90% -- does this matter?

Alerting Is Not Enough

Ideally you know trends in order to plan
capacity

“e.g. database load steadily climbing over the
last 6 months. what can we do about this?”

Timeseries Data

Metric name, value, and a time

logins_per_5_minutes 120 1400165858
500_responses_served 1 1399842219

Timeseries Data

Can be aggregated
Can be stored for historical trends
One metric can be plotted against another

Challenges with Timeseries Data

You may want to store a lot of data at once
You may want to intake a lot of data at once
How can you use timeseries data to enable
improvement?

Using Timeseries Data

Metric
Database

A

B

C

D

Collector

Collector

Collector

Metric
Visualizer

The Rest of This Talk

Building Your Own Timeseries Data
Collector using Open Source Software

Infrastructural Visibility

Details about technologies used for deployment
● CPU
● Memory
● Load
● # of threads connected to database
● # of slow queries
● amount of time per slow query

Infrastructural Visibility

Main strategy: install open source tools that
hook in to your infrastructure in one way or
another

Logster, Logstash - parse application logs
Collectd - applications, infrastructure stats

Application Visibility

Details about custom code you’ve written
● time per web service call
● # of queries per a specific app server thread

Application Visibility

Main strategy: custom application code that
sends metrics

Graphite: Scalable Realtime Graphing

Metric
Database

A

B

C

D

Collector

Collector

Collector

Metric
Visualizer

GRAPHITE

Graphite: Scalable Realtime Graphing

Graphite Claims from their Website

“a bit of a niche application”
http://graphite.readthedocs.org/en/latest/

Orbitz: 160k different metrics/minute
Real-time graphing, even under heavy load

http://graphite.readthedocs.org/en/latest/
http://graphite.readthedocs.org/en/latest/

Graphite Claims from Me

The first tool I would install on joining a new
team

Main enabler of “DevOps” continuous
improvement

(Kind of a PITA to set up)

More About Graphite

Three parts:
● Carbon: Metric intake
● Whisper: Metric storage
● Web: Metric visibility

Each has its own set of config files, etc

Graphite listens on TCP port 2003

metric_path value timestamp

Other tools make this easier
● (see the rest of this talk)

Getting Data Into Graphite

Visualizing Data in Graphite

Graphs have functions on metrics

Graphite Functions
alias(sum(prxy-n0*.production.ord.reach.proxy_requests_total_15m_rate),
"Proxy Requests (ORD)")

alias(sum(prxy-n0*.production.syd.reach.proxy_requests_total_15m_rate),
"Proxy Requests (SYD)")

alias(sum(prxy-n0*.production.dfw.reach.proxy_requests_total_15m_rate),
"Proxy Requests (DFW)")

Graphite comes with a lot of functions for
transforming/displaying data: http://graphite.readthedocs.
org/en/latest/functions.html

The ones I end up using the most:
sum, sumSeries, avgSeries, scale, highestMax, summarize

You end up having to build a lot of knowledge about
Graphite to really use it effectively.

Graphite Capabilities

http://graphite.readthedocs.org/en/latest/functions.html
http://graphite.readthedocs.org/en/latest/functions.html
http://graphite.readthedocs.org/en/latest/functions.html

Stats daemon from Etsy

They wrote a blog post: http://codeascraft.
com/2011/02/15/measure-anything-measure-everything/

Written in Node.js and receives stats over UDP

Statsd

http://codeascraft.com/2011/02/15/measure-anything-measure-everything/
http://codeascraft.com/2011/02/15/measure-anything-measure-everything/
http://codeascraft.com/2011/02/15/measure-anything-measure-everything/

Statsd concepts
Clients send data to statsd

Every flush interval, send data to Graphite

Counters, timers, and gauges have different behaviors in
what data gets sent every flush interval

Statsd: Counters

1 1 1 1

1 1 1
2

1

1 1

1

4 9

3

3

Statsd: Timers

3.1 2 1
5

1.1

0.7 0.6

1.2

mean=0.9
min=0.6
max=1.2

mean=2.7
min=1
max=5

3

mean=3
min=3
max=3

Statsd: Gauges

1

12

2

5

1 11

1 5

3

3

2 Dec 17:03:26 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.response.200:1|c
2 Dec 17:03:26 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.bytes:41.0|c
2 Dec 17:03:26 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.response.time:28111.0|ms
2 Dec 17:03:28 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.response.200:1|c
2 Dec 17:03:28 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.bytes:1069.0|c
2 Dec 17:03:28 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.response.time:222.0|ms

Example Statsd Debug Output

2 Dec 17:03:26 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.response.200:1|c
2 Dec 17:03:26 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.bytes:41.0|c
2 Dec 17:03:26 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.response.time:28111.0|ms
2 Dec 17:03:28 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.response.200:1|c
2 Dec 17:03:28 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.bytes:1069.0|c
2 Dec 17:03:28 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.response.time:222.0|ms

The Metric Name

lb-n01_staging_dfw_reach_rackspace_net.apache.response.200

2 Dec 17:03:26 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.response.200:1|c
2 Dec 17:03:26 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.bytes:41.0|c
2 Dec 17:03:26 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.response.time:28111.0|ms
2 Dec 17:03:28 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.response.200:1|c
2 Dec 17:03:28 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.bytes:1069.0|c
2 Dec 17:03:28 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.response.time:222.0|ms

The Metric Type

Increment the counter
lb-n01_staging_dfw_reach_rackspace_net.apache.response.200

By the value
1

2 Dec 17:03:26 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.response.200:1|c
2 Dec 17:03:26 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.bytes:41.0|c
2 Dec 17:03:26 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.response.time:28111.0|ms
2 Dec 17:03:28 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.response.200:1|c
2 Dec 17:03:28 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.bytes:1069.0|c
2 Dec 17:03:28 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.response.time:222.0|ms

Another counter

Increment the counter
lb-n01_staging_dfw_reach_rackspace_net.apache.bytes

By the value
41

2 Dec 17:03:26 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.response.200:1|c
2 Dec 17:03:26 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.bytes:41.0|c
2 Dec 17:03:26 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.response.time:28111.0|ms
2 Dec 17:03:28 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.response.200:1|c
2 Dec 17:03:28 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.bytes:1069.0|c
2 Dec 17:03:28 - DEBUG: lb-n01_staging_dfw_reach_rackspace_net.apache.response.time:222.0|ms

A Timer

The timer
lb-n01_staging_dfw_reach_rackspace_net.apache.response

Had the value
28111 ms

Disclaimer: (this is actually in microseconds from the Apache logs. statsd does not care about
the unit of measure)

Sending Data to Statsd
Many client libraries for your favorite language

Node: https://github.com/msiebuhr/node-statsd-client
Java: https://github.com/youdevise/java-statsd-client
.NET: https://github.com/robbihun/NStatsD.Client
Ruby: https://github.com/reinh/statsd/
Python: https://github.com/WoLpH/python-statsd

https://github.com/msiebuhr/node-statsd-client
https://github.com/youdevise/java-statsd-client
https://github.com/robbihun/NStatsD.Client
https://github.com/reinh/statsd/
https://github.com/WoLpH/python-statsd

Sending Data to Statsd
 with statsd.timer('cassandra.query'):

 if not connection.session:

 statsd.incr('cassandra.query.session_create')

 connection.connect()

 query_statement = StatementQuery(query_string)

 with statsd.timer('cassandra.query.session_execute'):

 result = connection.session.execute(

 query_statement,

 parameters=parameters or {}

)

 statsd.incr('cassandra.query')

 return result

Getting Data To Statsd

Statsd clients are great if you control the code

What if you don’t?

You are not going to patch Apache/IIS/etc to
make statsd client calls

Logster

https://github.com/etsy/logster

Parse log lines and output to Graphite/Statsd

Essential complexity: watching your log files for
changes

https://github.com/etsy/logster
https://github.com/etsy/logster

Logster
sudo /usr/bin/logster \

--output=graphite \

--graphite-host=graphite.example.com:2003 \

SampleLogster \

/var/log/httpd/access_log

Logster
sudo /usr/bin/logster \

--output=graphite \

--graphite-host=graphite.example.com:2003 \

SampleLogster \

/var/log/httpd/access_log

Type of Output
(graphite, statsd, etc)

Logster
sudo /usr/bin/logster \

--output=graphite \

--graphite-host=graphite.example.com:2003 \

SampleLogster \

/var/log/httpd/access_log

Destination

Logster
sudo /usr/bin/logster \

--output=graphite \

--graphite-host=graphite.example.com:2003 \

SampleLogster \

/var/log/httpd/access_log

Parser Class
(written in Python)

Logster
sudo /usr/bin/logster \

--output=graphite \

--graphite-host=graphite.example.com:2003 \

SampleLogster \

/var/log/httpd/access_log

Log File to Watch

Example Logster Parser

Example Logster Parser

Example Logster Parser

Logstash Agent

Heavier weight than Logster

Parse events (log messages), output metrics

http://logstash.net/docs/1.4.1/outputs/statsd
http://logstash.net/docs/1.4.1/outputs/graphite

http://logstash.net/docs/1.4.1/outputs/statsd
http://logstash.net/docs/1.4.1/outputs/statsd
http://logstash.net/docs/1.4.1/outputs/graphite
http://logstash.net/docs/1.4.1/outputs/graphite

Logstash Agent

We (Rackspace) use Rackspace Cloud
Monitoring

Run Cloud Monitoring Agent on all machines
● checks CPU, I/O, disk system, etc

How to get metrics out?

Logstash Agent
Fri Jan 10 11:48:29 2014 DBG: 50.57.61.12:443 (hostname=agent-
endpoint-ord.monitoring.api.rackspacecloud.com connID=34) ->
SENDING: (endpoint:44391) => {"target":"endpoint","source":"
848592c9-0130-445a-c450-bc764e111acb","id":"44391","params":
{"timestamp":1389354509170,"status":"success","state":"
available","check_type":"agent.load_average","metrics":[[null,
{"15m":{"t":"double","v":"0.27"},"5m":{"t":"double","v":"
0.33"},"1m":{"t":"double","v":"0.36"}}]],"check_id":"
ch96OT6akx"},"v":"1","method":"check_metrics.post"}

Logstash Agent

Logstash Agent

Logstash Agent

Logstash Agent

Collectd

Metric collection daemon

Plugins to read data from many common apps

Plugins to output data to Statsd/Graphite/etc

Collectd

Plugins for:
● memory, cpu, load average
● nginx, java, apache
● output to graphite, statsd, etc

Collectd

Some Of My Favorite Metrics
From Work

My Team

Rackspace Cloud Control Panel

UI on top of a bunch of other services (15+)

Visibility is important (or we go insane)

Why is the Control Panel Slow?

Why Is The Control Panel Erroring?

What Are Our Slowest Queries?

Is Cassandra Healthy?

How Utilized Are Our App Serevrs?

How Much Traffic Are We Serving?

How Great Was Cassandra 2.0.7?

My Journey on Visibility

Final Thoughts

Outputting metrics in real-time enables
continuous improvement

This is probably the first thing I’d set up on any
future team

Final Thoughts

You can only really answer questions that you’
ve enabled yourself to answer

Trying to reconstruct nontrivial events from logs
is extremely difficult

Final Thoughts

Systems should be instrumented to provide
information from their deployment to the
product development team

This lets you have higher quality conversations
and make great products

Demo Time With Docker

